wpwaCDM¶
-
class
astropy.cosmology.
wpwaCDM
(*args, **kwargs)[source]¶ Bases:
astropy.cosmology.FLRW
FLRW cosmology with a CPL dark energy equation of state, a pivot redshift, and curvature.
The equation for the dark energy equation of state uses the CPL form as described in Chevallier & Polarski Int. J. Mod. Phys. D10, 213 (2001) and Linder PRL 90, 91301 (2003), but modified to have a pivot redshift as in the findings of the Dark Energy Task Force (Albrecht et al. arXiv:0901.0721 (2009)): \(w(a) = w_p + w_a (a_p - a) = w_p + w_a( 1/(1+zp) - 1/(1+z) )\).
- Parameters
- H0
python:float
orQuantity
[‘frequency’] Hubble constant at z = 0. If a float, must be in [km/sec/Mpc]
- Om0
python:float
Omega matter: density of non-relativistic matter in units of the critical density at z=0.
- Ode0
python:float
Omega dark energy: density of dark energy in units of the critical density at z=0.
- wp
python:float
, optional Dark energy equation of state at the pivot redshift zp. This is pressure/density for dark energy in units where c=1.
- wa
python:float
, optional Negative derivative of the dark energy equation of state with respect to the scale factor. A cosmological constant has wp=-1.0 and wa=0.0.
- zp
python:float
, optional Pivot redshift – the redshift where w(z) = wp
- Tcmb0
python:float
or scalarQuantity
[‘temperature’], optional Temperature of the CMB z=0. If a float, must be in [K]. Default: 0 [K]. Setting this to zero will turn off both photons and neutrinos (even massive ones).
- Neff
python:float
, optional Effective number of Neutrino species. Default 3.04.
- m_nuquantity-like [‘energy’, ‘mass’] or numpy:array_like, optional
Mass of each neutrino species in [eV] (mass-energy equivalency enabled). If this is a scalar Quantity, then all neutrino species are assumed to have that mass. Otherwise, the mass of each species. The actual number of neutrino species (and hence the number of elements of m_nu if it is not scalar) must be the floor of Neff. Typically this means you should provide three neutrino masses unless you are considering something like a sterile neutrino.
- Ob0
python:float
orpython:None
, optional Omega baryons: density of baryonic matter in units of the critical density at z=0. If this is set to None (the default), any computation that requires its value will raise an exception.
- name
python:str
orpython:None
, optional Name for this cosmological object.
- H0
Examples
>>> from astropy.cosmology import wpwaCDM >>> cosmo = wpwaCDM(H0=70, Om0=0.3, Ode0=0.7, wp=-0.9, wa=0.2, zp=0.4)
The comoving distance in Mpc at redshift z:
>>> z = 0.5 >>> dc = cosmo.comoving_distance(z)
Attributes Summary
Negative derivative of dark energy equation of state w.r.t.
Dark energy equation of state at the pivot redshift zp
The pivot redshift, where w(z) = wp
Methods Summary
Evaluates the redshift dependence of the dark energy density.
w
(z)Returns dark energy equation of state at redshift
z
.Attributes Documentation
-
wa
¶ Negative derivative of dark energy equation of state w.r.t. a
-
wp
¶ Dark energy equation of state at the pivot redshift zp
-
zp
¶ The pivot redshift, where w(z) = wp
Methods Documentation
-
de_density_scale
(z)[source]¶ Evaluates the redshift dependence of the dark energy density.
- Parameters
- znumpy:array_like
Input redshifts.
- Returns
- I
ndarray
orpython:float
The scaling of the energy density of dark energy with redshift. Returns float if input scalar.
- I
Notes
The scaling factor, I, is defined by \(\\rho(z) = \\rho_0 I\), and in this case is given by
\[ \begin{align}\begin{aligned}a_p = \frac{1}{1 + z_p}\\I = \left(1 + z\right)^{3 \left(1 + w_p + a_p w_a\right)} \exp \left(-3 w_a \frac{z}{1+z}\right)\end{aligned}\end{align} \]
-
w
(z)[source]¶ Returns dark energy equation of state at redshift
z
.- Parameters
- znumpy:array_like
Input redshifts.
- Returns
- w
ndarray
orpython:float
The dark energy equation of state Returns float if input scalar.
- w
Notes
The dark energy equation of state is defined as \(w(z) = P(z)/\rho(z)\), where \(P(z)\) is the pressure at redshift z and \(\rho(z)\) is the density at redshift z, both in units where c=1. Here this is \(w(z) = w_p + w_a (a_p - a)\) where \(a = 1/1+z\) and \(a_p = 1 / 1 + z_p\).