HaskellForMaths-0.4.8: Combinatorics, group theory, commutative algebra, non-commutative algebra

Safe HaskellNone
LanguageHaskell98

Math.Combinatorics.CombinatorialHopfAlgebra

Description

A module defining the following Combinatorial Hopf Algebras, together with coalgebra or Hopf algebra morphisms between them:

  • Sh, the Shuffle Hopf algebra
  • SSym, the Malvenuto-Reutnenauer Hopf algebra of permutations
  • YSym, the (dual of the) Loday-Ronco Hopf algebra of binary trees
  • QSym, the Hopf algebra of quasi-symmetric functions (having a basis indexed by compositions)
  • Sym, the Hopf algebra of symmetric functions (having a basis indexed by integer partitions)
  • NSym, the Hopf algebra of non-commutative symmetric functions

Synopsis

Documentation

newtype Shuffle a Source #

A basis for the shuffle algebra. As a vector space, the shuffle algebra is identical to the tensor algebra. However, we consider a different algebra structure, based on the shuffle product. Together with the deconcatenation coproduct, this leads to a Hopf algebra structure.

Constructors

Sh [a] 

Instances

(Eq k, Num k, Ord a) => HopfAlgebra k (Shuffle a) Source # 

Methods

antipode :: Vect k (Shuffle a) -> Vect k (Shuffle a) Source #

(Eq k, Num k, Ord a) => Bialgebra k (Shuffle a) Source # 
(Eq k, Num k, Ord a) => Coalgebra k (Shuffle a) Source # 

Methods

counit :: Vect k (Shuffle a) -> k Source #

comult :: Vect k (Shuffle a) -> Vect k (Tensor (Shuffle a) (Shuffle a)) Source #

(Eq k, Num k, Ord a) => Algebra k (Shuffle a) Source # 

Methods

unit :: k -> Vect k (Shuffle a) Source #

mult :: Vect k (Tensor (Shuffle a) (Shuffle a)) -> Vect k (Shuffle a) Source #

Eq a => Eq (Shuffle a) Source # 

Methods

(==) :: Shuffle a -> Shuffle a -> Bool #

(/=) :: Shuffle a -> Shuffle a -> Bool #

Ord a => Ord (Shuffle a) Source # 

Methods

compare :: Shuffle a -> Shuffle a -> Ordering #

(<) :: Shuffle a -> Shuffle a -> Bool #

(<=) :: Shuffle a -> Shuffle a -> Bool #

(>) :: Shuffle a -> Shuffle a -> Bool #

(>=) :: Shuffle a -> Shuffle a -> Bool #

max :: Shuffle a -> Shuffle a -> Shuffle a #

min :: Shuffle a -> Shuffle a -> Shuffle a #

Show a => Show (Shuffle a) Source # 

Methods

showsPrec :: Int -> Shuffle a -> ShowS #

show :: Shuffle a -> String #

showList :: [Shuffle a] -> ShowS #

sh :: [a] -> Vect Q (Shuffle a) Source #

Construct a basis element of the shuffle algebra

shuffles :: [a] -> [a] -> [[a]] Source #

deconcatenations :: [a] -> [([a], [a])] Source #

newtype SSymF Source #

The fundamental basis for the Malvenuto-Reutenauer Hopf algebra of permutations, SSym.

Constructors

SSymF [Int] 

Instances

Eq SSymF Source # 

Methods

(==) :: SSymF -> SSymF -> Bool #

(/=) :: SSymF -> SSymF -> Bool #

Ord SSymF Source # 

Methods

compare :: SSymF -> SSymF -> Ordering #

(<) :: SSymF -> SSymF -> Bool #

(<=) :: SSymF -> SSymF -> Bool #

(>) :: SSymF -> SSymF -> Bool #

(>=) :: SSymF -> SSymF -> Bool #

max :: SSymF -> SSymF -> SSymF #

min :: SSymF -> SSymF -> SSymF #

Show SSymF Source # 

Methods

showsPrec :: Int -> SSymF -> ShowS #

show :: SSymF -> String #

showList :: [SSymF] -> ShowS #

HasInverses SSymF Source # 

Methods

inverse :: SSymF -> SSymF Source #

(Eq k, Num k) => HopfAlgebra k SSymF Source # 

Methods

antipode :: Vect k SSymF -> Vect k SSymF Source #

(Eq k, Num k) => Bialgebra k SSymF Source # 
(Eq k, Num k) => Coalgebra k SSymF Source # 
(Eq k, Num k) => Algebra k SSymF Source # 

Methods

unit :: k -> Vect k SSymF Source #

mult :: Vect k (Tensor SSymF SSymF) -> Vect k SSymF Source #

(Eq k, Num k) => HasPairing k SSymF SSymF Source #

A pairing showing that SSym is self-adjoint

Methods

pairing :: Vect k (Tensor SSymF SSymF) -> Vect k () Source #

(Eq k, Num k) => HasPairing k SSymF (Dual SSymF) Source # 

Methods

pairing :: Vect k (Tensor SSymF (Dual SSymF)) -> Vect k () Source #

(Eq k, Num k) => HopfAlgebra k (Dual SSymF) Source # 

Methods

antipode :: Vect k (Dual SSymF) -> Vect k (Dual SSymF) Source #

(Eq k, Num k) => Bialgebra k (Dual SSymF) Source # 
(Eq k, Num k) => Coalgebra k (Dual SSymF) Source # 
(Eq k, Num k) => Algebra k (Dual SSymF) Source # 

Methods

unit :: k -> Vect k (Dual SSymF) Source #

mult :: Vect k (Tensor (Dual SSymF) (Dual SSymF)) -> Vect k (Dual SSymF) Source #

ssymF :: [Int] -> Vect Q SSymF Source #

Construct a fundamental basis element in SSym. The list of ints must be a permutation of [1..n], eg [1,2], [3,4,2,1].

prop_Associative :: Eq a => (a -> a -> a) -> (a, a, a) -> Bool Source #

flatten :: (Ord a, Num t, Enum t) => [a] -> [t] Source #

newtype SSymM Source #

An alternative "monomial" basis for the Malvenuto-Reutenauer Hopf algebra of permutations, SSym. This basis is related to the fundamental basis by Mobius inversion in the poset of permutations with the weak order.

Constructors

SSymM [Int] 

Instances

Eq SSymM Source # 

Methods

(==) :: SSymM -> SSymM -> Bool #

(/=) :: SSymM -> SSymM -> Bool #

Ord SSymM Source # 

Methods

compare :: SSymM -> SSymM -> Ordering #

(<) :: SSymM -> SSymM -> Bool #

(<=) :: SSymM -> SSymM -> Bool #

(>) :: SSymM -> SSymM -> Bool #

(>=) :: SSymM -> SSymM -> Bool #

max :: SSymM -> SSymM -> SSymM #

min :: SSymM -> SSymM -> SSymM #

Show SSymM Source # 

Methods

showsPrec :: Int -> SSymM -> ShowS #

show :: SSymM -> String #

showList :: [SSymM] -> ShowS #

(Eq k, Num k) => HopfAlgebra k SSymM Source # 

Methods

antipode :: Vect k SSymM -> Vect k SSymM Source #

(Eq k, Num k) => Bialgebra k SSymM Source # 
(Eq k, Num k) => Coalgebra k SSymM Source # 
(Eq k, Num k) => Algebra k SSymM Source # 

Methods

unit :: k -> Vect k SSymM Source #

mult :: Vect k (Tensor SSymM SSymM) -> Vect k SSymM Source #

ssymM :: [Int] -> Vect Q SSymM Source #

Construct a monomial basis element in SSym. The list of ints must be a permutation of [1..n], eg [1,2], [3,4,2,1].

inversions :: (Ord a, Num t, Enum t) => [a] -> [(t, t)] Source #

weakOrder :: (Ord a1, Ord a) => [a] -> [a1] -> Bool Source #

mu :: (Num t1, Eq t) => ([t], t -> t -> Bool) -> t -> t -> t1 Source #

ssymMtoF :: (Eq k, Num k) => Vect k SSymM -> Vect k SSymF Source #

Convert an element of SSym represented in the monomial basis to the fundamental basis

ssymFtoM :: (Eq k, Num k) => Vect k SSymF -> Vect k SSymM Source #

Convert an element of SSym represented in the fundamental basis to the monomial basis

ssymFtoDual :: (Eq k, Num k) => Vect k SSymF -> Vect k (Dual SSymF) Source #

The isomorphism from SSym to its dual that takes a permutation in the fundamental basis to its inverse in the dual basis

data PBT a Source #

A type for (rooted) planar binary trees. The basis elements of the Loday-Ronco Hopf algebra are indexed by these.

Although the trees are labelled, we're really only interested in the shapes of the trees, and hence in the type PBT (). The Algebra, Coalgebra and HopfAlgebra instances all ignore the labels. However, it is convenient to allow labels, as they can be useful for seeing what is going on, and they also make it possible to define various ways to create trees from lists of labels.

Constructors

T (PBT a) a (PBT a) 
E 

Instances

Functor PBT Source # 

Methods

fmap :: (a -> b) -> PBT a -> PBT b #

(<$) :: a -> PBT b -> PBT a #

Eq a => Eq (PBT a) Source # 

Methods

(==) :: PBT a -> PBT a -> Bool #

(/=) :: PBT a -> PBT a -> Bool #

Ord a => Ord (PBT a) Source # 

Methods

compare :: PBT a -> PBT a -> Ordering #

(<) :: PBT a -> PBT a -> Bool #

(<=) :: PBT a -> PBT a -> Bool #

(>) :: PBT a -> PBT a -> Bool #

(>=) :: PBT a -> PBT a -> Bool #

max :: PBT a -> PBT a -> PBT a #

min :: PBT a -> PBT a -> PBT a #

Show a => Show (PBT a) Source # 

Methods

showsPrec :: Int -> PBT a -> ShowS #

show :: PBT a -> String #

showList :: [PBT a] -> ShowS #

newtype YSymF a Source #

The fundamental basis for (the dual of) the Loday-Ronco Hopf algebra of binary trees, YSym.

Constructors

YSymF (PBT a) 

Instances

Functor YSymF Source # 

Methods

fmap :: (a -> b) -> YSymF a -> YSymF b #

(<$) :: a -> YSymF b -> YSymF a #

(Eq k, Num k, Ord a) => HopfAlgebra k (YSymF a) Source # 

Methods

antipode :: Vect k (YSymF a) -> Vect k (YSymF a) Source #

(Eq k, Num k, Ord a) => Bialgebra k (YSymF a) Source # 
(Eq k, Num k, Ord a) => Coalgebra k (YSymF a) Source # 

Methods

counit :: Vect k (YSymF a) -> k Source #

comult :: Vect k (YSymF a) -> Vect k (Tensor (YSymF a) (YSymF a)) Source #

(Eq k, Num k, Ord a) => Algebra k (YSymF a) Source # 

Methods

unit :: k -> Vect k (YSymF a) Source #

mult :: Vect k (Tensor (YSymF a) (YSymF a)) -> Vect k (YSymF a) Source #

Eq a => Eq (YSymF a) Source # 

Methods

(==) :: YSymF a -> YSymF a -> Bool #

(/=) :: YSymF a -> YSymF a -> Bool #

Ord a => Ord (YSymF a) Source # 

Methods

compare :: YSymF a -> YSymF a -> Ordering #

(<) :: YSymF a -> YSymF a -> Bool #

(<=) :: YSymF a -> YSymF a -> Bool #

(>) :: YSymF a -> YSymF a -> Bool #

(>=) :: YSymF a -> YSymF a -> Bool #

max :: YSymF a -> YSymF a -> YSymF a #

min :: YSymF a -> YSymF a -> YSymF a #

Show a => Show (YSymF a) Source # 

Methods

showsPrec :: Int -> YSymF a -> ShowS #

show :: YSymF a -> String #

showList :: [YSymF a] -> ShowS #

ysymF :: PBT a -> Vect Q (YSymF a) Source #

Construct the element of YSym in the fundamental basis indexed by the given tree

nodecount :: Num t => PBT t1 -> t Source #

leafcount :: Num t => PBT t1 -> t Source #

prefix :: PBT t -> [t] Source #

shapeSignature :: Num t => PBT t1 -> [t] Source #

nodeCountTree :: Num a => PBT t -> PBT a Source #

leafCountTree :: Num a => PBT t -> PBT a Source #

lrCountTree :: Num t1 => PBT t -> PBT (t1, t1) Source #

shape :: PBT a -> PBT () Source #

numbered :: Num a => PBT t -> PBT a Source #

splits :: PBT a -> [(PBT a, PBT a)] Source #

multisplits :: (Num t, Eq t) => t -> PBT a -> [[PBT a]] Source #

graft :: [PBT a] -> PBT a -> PBT a Source #

newtype YSymM Source #

An alternative "monomial" basis for (the dual of) the Loday-Ronco Hopf algebra of binary trees, YSym.

Constructors

YSymM (PBT ()) 

Instances

Eq YSymM Source # 

Methods

(==) :: YSymM -> YSymM -> Bool #

(/=) :: YSymM -> YSymM -> Bool #

Ord YSymM Source # 

Methods

compare :: YSymM -> YSymM -> Ordering #

(<) :: YSymM -> YSymM -> Bool #

(<=) :: YSymM -> YSymM -> Bool #

(>) :: YSymM -> YSymM -> Bool #

(>=) :: YSymM -> YSymM -> Bool #

max :: YSymM -> YSymM -> YSymM #

min :: YSymM -> YSymM -> YSymM #

Show YSymM Source # 

Methods

showsPrec :: Int -> YSymM -> ShowS #

show :: YSymM -> String #

showList :: [YSymM] -> ShowS #

(Eq k, Num k) => HopfAlgebra k YSymM Source # 

Methods

antipode :: Vect k YSymM -> Vect k YSymM Source #

(Eq k, Num k) => Bialgebra k YSymM Source # 
(Eq k, Num k) => Coalgebra k YSymM Source # 
(Eq k, Num k) => Algebra k YSymM Source # 

Methods

unit :: k -> Vect k YSymM Source #

mult :: Vect k (Tensor YSymM YSymM) -> Vect k YSymM Source #

ysymM :: PBT () -> Vect Q YSymM Source #

Construct the element of YSym in the monomial basis indexed by the given tree

trees :: Int -> [PBT ()] Source #

List all trees with the given number of nodes

tamariCovers :: PBT a -> [PBT a] Source #

The covering relation for the Tamari partial order on binary trees

tamariUpSet :: Ord a => PBT a -> [PBT a] Source #

The up-set of a binary tree in the Tamari partial order

tamariOrder :: PBT a -> PBT a -> Bool Source #

The Tamari partial order on binary trees. This is only defined between trees of the same size (number of nodes). The result between trees of different sizes is undefined (we don't check).

ysymMtoF :: (Eq k, Num k) => Vect k YSymM -> Vect k (YSymF ()) Source #

Convert an element of YSym represented in the monomial basis to the fundamental basis

ysymFtoM :: (Eq k, Num k) => Vect k (YSymF ()) -> Vect k YSymM Source #

Convert an element of YSym represented in the fundamental basis to the monomial basis

compositions :: Int -> [[Int]] Source #

List the compositions of an integer n. For example, the compositions of 4 are [[1,1,1,1],[1,1,2],[1,2,1],[1,3],[2,1,1],[2,2],[3,1],[4]]

quasiShuffles :: [Int] -> [Int] -> [[Int]] Source #

newtype QSymM Source #

A type for the monomial basis for the quasi-symmetric functions, indexed by compositions.

Constructors

QSymM [Int] 

Instances

Eq QSymM Source # 

Methods

(==) :: QSymM -> QSymM -> Bool #

(/=) :: QSymM -> QSymM -> Bool #

Ord QSymM Source # 

Methods

compare :: QSymM -> QSymM -> Ordering #

(<) :: QSymM -> QSymM -> Bool #

(<=) :: QSymM -> QSymM -> Bool #

(>) :: QSymM -> QSymM -> Bool #

(>=) :: QSymM -> QSymM -> Bool #

max :: QSymM -> QSymM -> QSymM #

min :: QSymM -> QSymM -> QSymM #

Show QSymM Source # 

Methods

showsPrec :: Int -> QSymM -> ShowS #

show :: QSymM -> String #

showList :: [QSymM] -> ShowS #

(Eq k, Num k) => HopfAlgebra k QSymM Source # 

Methods

antipode :: Vect k QSymM -> Vect k QSymM Source #

(Eq k, Num k) => Bialgebra k QSymM Source # 
(Eq k, Num k) => Coalgebra k QSymM Source # 
(Eq k, Num k) => Algebra k QSymM Source # 

Methods

unit :: k -> Vect k QSymM Source #

mult :: Vect k (Tensor QSymM QSymM) -> Vect k QSymM Source #

(Eq k, Num k) => HasPairing k NSym QSymM Source #

A duality pairing between NSym and QSymM (monomial basis), showing that NSym and QSym are dual.

Methods

pairing :: Vect k (Tensor NSym QSymM) -> Vect k () Source #

qsymM :: [Int] -> Vect Q QSymM Source #

Construct the element of QSym in the monomial basis indexed by the given composition

coarsenings :: Num a => [a] -> [[a]] Source #

refinements :: [Int] -> [[Int]] Source #

newtype QSymF Source #

A type for the fundamental basis for the quasi-symmetric functions, indexed by compositions.

Constructors

QSymF [Int] 

Instances

Eq QSymF Source # 

Methods

(==) :: QSymF -> QSymF -> Bool #

(/=) :: QSymF -> QSymF -> Bool #

Ord QSymF Source # 

Methods

compare :: QSymF -> QSymF -> Ordering #

(<) :: QSymF -> QSymF -> Bool #

(<=) :: QSymF -> QSymF -> Bool #

(>) :: QSymF -> QSymF -> Bool #

(>=) :: QSymF -> QSymF -> Bool #

max :: QSymF -> QSymF -> QSymF #

min :: QSymF -> QSymF -> QSymF #

Show QSymF Source # 

Methods

showsPrec :: Int -> QSymF -> ShowS #

show :: QSymF -> String #

showList :: [QSymF] -> ShowS #

(Eq k, Num k) => HopfAlgebra k QSymF Source # 

Methods

antipode :: Vect k QSymF -> Vect k QSymF Source #

(Eq k, Num k) => Bialgebra k QSymF Source # 
(Eq k, Num k) => Coalgebra k QSymF Source # 
(Eq k, Num k) => Algebra k QSymF Source # 

Methods

unit :: k -> Vect k QSymF Source #

mult :: Vect k (Tensor QSymF QSymF) -> Vect k QSymF Source #

qsymF :: [Int] -> Vect Q QSymF Source #

Construct the element of QSym in the fundamental basis indexed by the given composition

qsymMtoF :: (Eq k, Num k) => Vect k QSymM -> Vect k QSymF Source #

Convert an element of QSym represented in the monomial basis to the fundamental basis

qsymFtoM :: (Eq k, Num k) => Vect k QSymF -> Vect k QSymM Source #

Convert an element of QSym represented in the fundamental basis to the monomial basis

qsymPoly :: Int -> [Int] -> GlexPoly Q String Source #

qsymPoly n is is the quasi-symmetric polynomial in n variables for the indices is. (This corresponds to the monomial basis for QSym.) For example, qsymPoly 3 [2,1] == x1^2*x2+x1^2*x3+x2^2*x3.

newtype SymM Source #

A type for the monomial basis for Sym, the Hopf algebra of symmetric functions, indexed by integer partitions

Constructors

SymM [Int] 

Instances

Eq SymM Source # 

Methods

(==) :: SymM -> SymM -> Bool #

(/=) :: SymM -> SymM -> Bool #

Ord SymM Source # 

Methods

compare :: SymM -> SymM -> Ordering #

(<) :: SymM -> SymM -> Bool #

(<=) :: SymM -> SymM -> Bool #

(>) :: SymM -> SymM -> Bool #

(>=) :: SymM -> SymM -> Bool #

max :: SymM -> SymM -> SymM #

min :: SymM -> SymM -> SymM #

Show SymM Source # 

Methods

showsPrec :: Int -> SymM -> ShowS #

show :: SymM -> String #

showList :: [SymM] -> ShowS #

(Eq k, Num k) => HopfAlgebra k SymM Source # 

Methods

antipode :: Vect k SymM -> Vect k SymM Source #

(Eq k, Num k) => Bialgebra k SymM Source # 
(Eq k, Num k) => Coalgebra k SymM Source # 

Methods

counit :: Vect k SymM -> k Source #

comult :: Vect k SymM -> Vect k (Tensor SymM SymM) Source #

(Eq k, Num k) => Algebra k SymM Source # 

Methods

unit :: k -> Vect k SymM Source #

mult :: Vect k (Tensor SymM SymM) -> Vect k SymM Source #

(Eq k, Num k) => HasPairing k SymH SymM Source #

A duality pairing between the complete and monomial bases of Sym, showing that Sym is self-dual.

Methods

pairing :: Vect k (Tensor SymH SymM) -> Vect k () Source #

symM :: [Int] -> Vect Q SymM Source #

Construct the element of Sym in the monomial basis indexed by the given integer partition

compositionsFromPartition :: Eq a => [a] -> [[a]] Source #

symMult :: [Int] -> [Int] -> [[Int]] Source #

newtype SymE Source #

The elementary basis for Sym, the Hopf algebra of symmetric functions. Defined informally as > symE [n] = symM (replicate n 1) > symE lambda = product [symE [p] | p <- lambda]

Constructors

SymE [Int] 

Instances

Eq SymE Source # 

Methods

(==) :: SymE -> SymE -> Bool #

(/=) :: SymE -> SymE -> Bool #

Ord SymE Source # 

Methods

compare :: SymE -> SymE -> Ordering #

(<) :: SymE -> SymE -> Bool #

(<=) :: SymE -> SymE -> Bool #

(>) :: SymE -> SymE -> Bool #

(>=) :: SymE -> SymE -> Bool #

max :: SymE -> SymE -> SymE #

min :: SymE -> SymE -> SymE #

Show SymE Source # 

Methods

showsPrec :: Int -> SymE -> ShowS #

show :: SymE -> String #

showList :: [SymE] -> ShowS #

(Eq k, Num k) => Bialgebra k SymE Source # 
(Eq k, Num k) => Coalgebra k SymE Source # 

Methods

counit :: Vect k SymE -> k Source #

comult :: Vect k SymE -> Vect k (Tensor SymE SymE) Source #

(Eq k, Num k) => Algebra k SymE Source # 

Methods

unit :: k -> Vect k SymE Source #

mult :: Vect k (Tensor SymE SymE) -> Vect k SymE Source #

symEtoM :: (Eq k, Num k) => Vect k SymE -> Vect k SymM Source #

Convert from the elementary to the monomial basis of Sym

newtype SymH Source #

The complete basis for Sym, the Hopf algebra of symmetric functions. Defined informally as > symH [n] = sum [symM lambda | lambda <- integerPartitions n] -- == all monomials of weight n > symH lambda = product [symH [p] | p <- lambda]

Constructors

SymH [Int] 

Instances

Eq SymH Source # 

Methods

(==) :: SymH -> SymH -> Bool #

(/=) :: SymH -> SymH -> Bool #

Ord SymH Source # 

Methods

compare :: SymH -> SymH -> Ordering #

(<) :: SymH -> SymH -> Bool #

(<=) :: SymH -> SymH -> Bool #

(>) :: SymH -> SymH -> Bool #

(>=) :: SymH -> SymH -> Bool #

max :: SymH -> SymH -> SymH #

min :: SymH -> SymH -> SymH #

Show SymH Source # 

Methods

showsPrec :: Int -> SymH -> ShowS #

show :: SymH -> String #

showList :: [SymH] -> ShowS #

(Eq k, Num k) => Bialgebra k SymH Source # 
(Eq k, Num k) => Coalgebra k SymH Source # 

Methods

counit :: Vect k SymH -> k Source #

comult :: Vect k SymH -> Vect k (Tensor SymH SymH) Source #

(Eq k, Num k) => Algebra k SymH Source # 

Methods

unit :: k -> Vect k SymH Source #

mult :: Vect k (Tensor SymH SymH) -> Vect k SymH Source #

(Eq k, Num k) => HasPairing k SymH SymM Source #

A duality pairing between the complete and monomial bases of Sym, showing that Sym is self-dual.

Methods

pairing :: Vect k (Tensor SymH SymM) -> Vect k () Source #

symHtoM :: (Eq k, Num k) => Vect k SymH -> Vect k SymM Source #

Convert from the complete to the monomial basis of Sym

newtype NSym Source #

A basis for NSym, the Hopf algebra of non-commutative symmetric functions, indexed by compositions

Constructors

NSym [Int] 

Instances

Eq NSym Source # 

Methods

(==) :: NSym -> NSym -> Bool #

(/=) :: NSym -> NSym -> Bool #

Ord NSym Source # 

Methods

compare :: NSym -> NSym -> Ordering #

(<) :: NSym -> NSym -> Bool #

(<=) :: NSym -> NSym -> Bool #

(>) :: NSym -> NSym -> Bool #

(>=) :: NSym -> NSym -> Bool #

max :: NSym -> NSym -> NSym #

min :: NSym -> NSym -> NSym #

Show NSym Source # 

Methods

showsPrec :: Int -> NSym -> ShowS #

show :: NSym -> String #

showList :: [NSym] -> ShowS #

(Eq k, Num k) => HopfAlgebra k NSym Source # 

Methods

antipode :: Vect k NSym -> Vect k NSym Source #

(Eq k, Num k) => Bialgebra k NSym Source # 
(Eq k, Num k) => Coalgebra k NSym Source # 

Methods

counit :: Vect k NSym -> k Source #

comult :: Vect k NSym -> Vect k (Tensor NSym NSym) Source #

(Eq k, Num k) => Algebra k NSym Source # 

Methods

unit :: k -> Vect k NSym Source #

mult :: Vect k (Tensor NSym NSym) -> Vect k NSym Source #

(Eq k, Num k) => HasPairing k NSym QSymM Source #

A duality pairing between NSym and QSymM (monomial basis), showing that NSym and QSym are dual.

Methods

pairing :: Vect k (Tensor NSym QSymM) -> Vect k () Source #

descendingTree :: Ord a => [a] -> PBT a Source #

descendingTreeMap :: (Eq k, Num k) => Vect k SSymF -> Vect k (YSymF ()) Source #

Given a permutation p of [1..n], we can construct a tree (the descending tree of p) as follows:

  • Split the permutation as p = ls ++ [n] ++ rs
  • Place n at the root of the tree, and recursively place the descending trees of ls and rs as the left and right children of the root
  • To bottom out the recursion, the descending tree of the empty permutation is of course the empty tree

This map between bases SSymF -> YSymF turns out to induce a morphism of Hopf algebras.

minPerm :: Num t => PBT t1 -> [t] Source #

maxPerm :: Num t => PBT t1 -> [t] Source #

leftLeafCompositionMap :: (Eq k, Num k) => Vect k (YSymF a) -> Vect k QSymF Source #

A Hopf algebra morphism from YSymF to QSymF

descents :: Ord a => [a] -> [Int] Source #

descentComposition :: (Ord a, Num t) => [a] -> [t] Source #

descentMap :: (Eq k, Num k) => Vect k SSymF -> Vect k QSymF Source #

Given a permutation of [1..n], its descents are those positions where the next number is less than the previous number. For example, the permutation [2,3,5,1,6,4] has descents from 5 to 1 and from 6 to 4. The descents can be regarded as cutting the permutation sequence into segments - 235-16-4 - and by counting the lengths of the segments, we get a composition 3+2+1. This map between bases SSymF -> QSymF turns out to induce a morphism of Hopf algebras.

under :: PBT a -> PBT a -> PBT a Source #

ysymmToSh :: Functor f => f YSymM -> f (Shuffle (PBT ())) Source #

symToQSymM :: (Eq k, Num k) => Vect k SymM -> Vect k QSymM Source #

The injection of Sym into QSym (defined over the monomial basis)

nsymToSymH :: (Eq k, Num k) => Vect k NSym -> Vect k SymH Source #

A surjection of NSym onto Sym (defined over the complete basis)

nsymToSSym :: (Num k, Eq k) => Vect k NSym -> Vect k SSymF Source #